Daniel Abend
2

Physics and Fluid Simulations in Real Time
[bookmark: _GoBack]
When developing The Barn, I needed to have an understanding of physics within a real time rendering platform looking at the abilities and limitations of physics engines in the present day. I need to explore how physics has evolved in relation to physics simulation as a subject, with a focus on the implementation of these effects in real time platforms. The advancement of physics in the past decades has contributed to creating an immersing and realistic environment for real time productions to take place. Physical effects are implemented into games to simulate dynamic cloth, hair and muscle mass. The use of physical effect has imitated Newtonian physics as well as implementing fluid effects and deformable objects using real life properties. With modern physics engines, there has been implementation of additional physics mechanics to create more advanced physical effects. Physics engine use a form of reverse engineering to develop a physical effect, without having to calculate the complete causality. Due to the realism attained by the physics engines, physics has been implemented into almost all modern games. Using physics as a gameplay mechanic has become common place. Whilst physics has become integral to modern games, the use of real time physics simulations is being applied to new and various fields including medical applications, vehicular visualisation and product visualisations.

The first video game to ever use physics was Tennis for Two in 1958. Invented by the physicist William Higginbotham, the game featured a horizontal line for the ground, a vertical line for a net and a point for the ball (Tretkoff, 2016). Using only transistors and circuitry, Tennis for Two featured limited gravity effects on the ball which could vary based on what planet the player selected and wind resistance (Tretkoff, 2016). Tennis for Two was mostly forgotten however and physics in video games didn’t come to prominence until 1972 with the release of Pong (Pong Game, 2016).
Although Pong wasn’t the first video game to feature physics, it was the most advanced of its time, requiring calculations coded into the circuitry of the system to direct the ball between the player controlled paddles (Niklas, 2016). The player controlled paddles and border walls would invoke a collision response upon the ball for every instance where the ball hit either objects. Every collision would cause the ball to be treated as a new object that was given new constant acceleration emulating the physical effect. Although Pong featured an entirely physics based gameplay, the physics involved were simplified to emulated the effect rather than the cause (Niklas, 2016).
Since Pong, physics in real time engines have been based upon the principle of reverse engineering a physical effect. (Serrano, 2016). This has led to the development of a multitude of physics engines (Boeing & Bräunl, 2007) which handles the simulation of objects using the basic principal of f=ma (Build New Games, 2012). This method increases performance and creates stable and reliable results for the user. By using ever increasing efficiencies in the way the physics is handled by the physics engine, highly complex and previously impossible simulations have become increasingly common and implemented (Bongart, 2016). Additionally, the rate in which computational power increases, for every twelve months, processing power doubles has aided immensely in the application of real time physics (Green, 2016).
Physics is part of and defines every part of life upon earth. Gravity pulls objects toward the planet centre resulting in weight. Objects collide with one another preventing objects from passing through another object and liquids dominant the planet surface. Although physics is part of our everyday lives, it has become a monumental struggle to simulate these physical effects within digital entertainment (Macklin, Muller, Chentanez, Kim, 2016). An early example of a fluid effect took place within the 1956 film The Ten Commandments using practical effects (Brosnan, 1974). Water was flooded into a controlled tank and filmed from multiple angles. These shots were then composited together to create the fluid simulation that would otherwise have been impossible (Brosnan, 1974).
As ground breaking as the practical effect was, simple fluid simulation effects in the digital entertainment weren’t present until the 1998 DreamWorks animated film Antz (Guinness World Records, 1998). As computing power began to increase, complex physics simulations using cloth, hair and fluids became commonly used and more realistic in both live action films and animated features (Failes, I). However, it has only been twelve years since the release of Half-Life 2 that complex realistic physics simulations have been present in video games (Stelly, 2007).
As advanced as the physics engines have grown within the last decade, fluid simulations have remained an incredibly difficult to accomplish physics effect (Macklin, Muller, Chentanez, Kim, 2016). Particle based effects are computationally intensive, taking current software such as Real Flow multiple days to simulate a large simulation (Irving, Guendelman, Losasso, Fedkiw, 2016). However, in July 2016, NVidia released Cataclysm, a real time, particle based solver within Unreal Engine 4 which could simulate the flooding of a city in real time (NVidia, 2016). A similar visual effects shot took Digital Domain and Tweak Films, “a long time,” in the 2004 film, Day After Tomorrow (Failes, p.70).
This dramatic advancement of physics in game engines has almost now caught up with the near-photorealistic graphics, cinematic quality surround sound and advanced Artificial Intelligence that out paces the human players in every field Kinephanos. (2016).
To perform the complex calculations in a real time platform, different physics effects are handled in different ways to increase performance (Firth, 2016). The most common and oldest form of physics handled by a physics engine is collision detection (Árnason, 2016). Collision detection and response are the most basic physics calculations performed by an engine. Collisions involve an algorithm that checks for every game tick, whether an actor is colliding with another actor (Gourlay, 2016). This collision detection can initiate a collision response. A collision response defines the action taken when an actor collides with another actor during gameplay. Results can vary from blocking players from walking through walls, reducing the health of a player if struck by a bullet of weapon or chain reaction events with other actors (Epic Games, 2016).
The more advanced rigid body physics relies on collision physics to perform. Rigid body physics describes an actor where deformation is ignored when any two given points on the actor will remain the constant distance apart regardless of an external force or collision (NVidia, n.d.). Actors with rigid body physics are defined by convex hulls describing the shape and orientation in addition to position, mass, velocity and objects bounds; these bounds do not change as the actor has force exerted upon it (Gourlay, 2016).
Rigid bodies can be used to simulate simplified gravity effects where the engine determines if the actor is colliding with an actor below it. If not, a new constant acceleration is added to the object and it moves in the new direction until it collides with an actor below it (NVidia, n.d.). Rigid can have forces exerted upon them via character movement or other actor collision invoking a collision response, resulting in a realistic physical response for solid actors such as concrete objects or large metal objects (NVidia, n.d.). However, rigid bodies are unable to deform under force resulting in unrealistic effects when deformable object such as a car simply bounces off a concrete wall at high speeds.
Soft body physics answers the shortcomings of rigid body physics by enabling the deformation of objects when forces are exerted upon them (Boeing, Bräunl, 2007). However, soft body physics, as with rigid body physics cost more in computational power. Soft body physics defines the actor as a collection of particles that describe the actor’s bounds (Gourlay, 2016). These particles are able to act as rigid bodies within the confines of the overall actor, resulting in the actors bounds to change shape but retain their connectedness and adjacency of various points on the body due to forces exerted upon the actor (Gourlay, 2016).
Soft body physics are typically used for cloth and hair which are able to be deformed based on global and local forces such as wind and movement of the parent actor (AMD, 2016). However, soft body physics has been steadily rising in other forms of applications such as a relatively cheap fluid substitute, muscle and fatty tissue deformation on characters and environmental destruction (Vlachos, 2016).
Fluid Effects are the current hurdle for game engines to overcome (Stam, 2016). Fluids have almost infinite freedom of motion that is completely non-linear with a constantly changing shape and topology (Stam, 2016). Fluids are particularly difficult to simulate accurately as a fluid can assume the shape of any container, are constantly colliding with everything around them as well as colliding within itself (Gourlay, 2016). This leads to a severe problem when dealing with fluids, if an actor were to collide with just one part of the fluid, the fluid must respond with its entirety (Gourlay, 2016).
There are a two main ways that physics simulations deal with fluids, as a field called an Eulerian view or a group of interacting particles called Lagrangian view. (Müller, Charypar, Gross, 2016). In field based simulations, each point on a grid is assign properties such as velocity, density, temperature and pressure (Gourlay, 2016). The position of the points on the grid never move but describes the flow of fluid inside it (Gourlay, 2016). The second method is treating the fluid as group of particles that interact. Each particle is described with properties such as position, velocity, density and temperature (Gourlay, 2016). This differs to the field based method by assigning each particle a position rather than the fixed grid of the field based method (Matthias, 2016). Often the two methods are utilised in combination to effectively simulate a fluid (Stam, 2016).
Fluids are used within modern games to immerse the audience in a way that hasn’t been seen since the first simulated fluids were seen in Antz. Fluids are generally used for simple water and smoke (Macklin, Muller, Chentanez, Kim, 2016).
Particle physics is very different to the physical effects above. Particle effects utilise the physics engine to create thousands of particles from an emitter in real time (Epic Games, 2016). Particles are treated as separate sprites within the physics engine, each sprite has collisions, and various user assigned properties (Epic Games, 2016). Particle system, such Cascade in Unreal Engine 4 use basic collisions per sprite for collisions in the level as well as being assigned position, mass, velocity and acceleration (Epic Games, 2016). Particle effects are used widely in modern games, however, they do not accurately simulate or function as a particle fluid. Due to their limitation, particle effects are generally used for fires, smoke, clouds and steam where the lack of accuracy isn’t noticeable to the player (Emperore & Sherry, 2015).
All physics types described above are being utilised in their own ways within modern games. All games today require the use of collision physics for hit boxes, boundary detection and collision response (Boeing, Bräunl, 2007). Rigid body physics are used more broadly with a move onto the mobile platform, with dynamic, rigid body simulations being able to run on mid-range smart phones today, there has been a dramatic rise of games using gravity simulation to drive and enhance the gameplay (NVidia, n.d.).
Soft body physics is steadily rising within many games such as The Witcher 3 integrating NVidia Hairworks and Apex for dynamic soft body clothing, real time hair and muscle jiggle and skin deformations (Coombes, 2014). However, mobile devices are only just developing the require computational power to access more advanced physics simulation in real-time through soft body physics.
Fluids within games today are becoming more integral to gameplay mechanics as in Valves 2011 game Portal 2 which utilised speciality shader models called metaballs to developed physics obeying ‘sticky’ fluids (Vlachos, 2016).
The future applications for physics within game engines is beyond promising. Collision physics will remain a critical part of game engines determining hits, collisions and collision responses. However, the complexity of the convex hulls defining the bounds of an object will become more accurate defining an actors complex structure as accurately as offline simulations make possible (Epic Games, 2016).
Both rigid body and soft body physics will become more widespread with most games integrating these features into the main production line as has been seen in recent games (NVidia, 2016). With the development of real-time complete environment destruction players will be introduced to new gameplay mechanics and real time destruction will be used for real life applications (Stelly, 2007).
Fluid physics and subsequently aerodynamic physics will become faster, more efficient and applied to game environments widespread and integrated into gameplay mechanics driving the narrative and player audience involvement (Vlachos, 2016). Additionally, with the increase in accuracy of physics in real time, there will be applications for real-time flood simulations (Bongart, 2016), studies for vehicle performance and design such as rocketry and cars (Tesla Motors, 2016) as well as applications for real-time medical simulation such as blood flow for patient imaging and scientific study of fluid behaviour (Lee, 2011).
Real time physics is being put to use in The Barn. Using the NVidia PhysX engine contained within Unreal Engine itself, I have been able to implement advanced collision response for player interaction with the environment around them. Using collision triggers, the player is able to pick up objects, add them to an inventory and drop them in a new location. These objects will then have rigid body physics applied to them, causing them to act under the influence of gravity.
Non-Player characters in The Barn are affected by both rigid body physics and soft body physics. Characters are affected by soft body physics in their clothing and hair using the apex soft body solver. These soft body physical effects add player immersion to the game environment and also serve to advance the aesthetic appeal that is commonly found in large studio games.
The implementation of fluid physics within The Barn is unlikely. The challenges of applying a premade solver such as the Cataclysm solver are still significant. The impact real time fluid physics has on performance is still quite large when operating in a game play level. However, alternative for fluid effects such as particle effects and soft body physics will be implemented to mimic fluid physics.
The rapid advancement of physics development within the real-time platforms have created unprecedented realism within games and real-time visualisations. With fluid physics on the verge of breaking into next generation platforms we will see a jump in realism and immersion when dealing with games and gameplay mechanics as well as the use of real time simulation for interactive cinema.
Developing an interactive story that involves puzzles and problem solving can now be driven by physics with mass driven trigger and fluid filled objects to solve puzzles and advance through the story is becoming increasingly accessible and common.
Through the use of physics in my project The Barn, I will be able to increase immersion through realistic physics through gravity and resistance, rigid body simulation for player interactivity to place objects onto objects for problem solving and potentially use soft body physics for deformable metal in a car body and cloth and hair.

References:

AMD. (2016). AMD TressFX Hair. AMD. Retrieved 10 September 2016, from
http://www.amd.com/en-us/innovations/software-technologies/tressfx

Árnason, B. (2016). Evolution of Physics in Video Games (1st ed.). Reykjavik:
Reykjavik University. Retrieved from http://www.olafurandri.com/nyti/papers2008/Evolution%20of%20Physics%20in%20Video%20Games.pdf

Boeing, A. & Bräunl, T. (2007). Evaluation of real-time physics simulation systems.
Proceedings of The 5Th International Conference On Computer Graphics and Interactive Techniques in Australia and Southeast Asia - GRAPHITE '07. http://dx.doi.org/10.1145/1321261.1321312

Bongart, R. (2016). Efficient Simulation of Fluid Dynamics in a 3D Game Engine (1st
ed.). Stockholm: Royal Institute of Technology. Retrieved from https://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2007/rapporter07/bongart_robert_07018.pdf
Brosnan, J. (1974). Movie magic. London: Macdonald.
Build New Games. (2012). How Physics Engines Work. Retrieved 7 September
2016, from http://buildnewgames.com/gamephysics/

Epic Games. (2016). Collision Overview. Retrieved 7 September 2016,
From https://docs.unrealengine.com/latest/INT/Engine/Physics/Collision/ Overview /index.html

Epic Games,. (2016). Cascade Particle Editor Reference. Docs.unrealengine.com.
Retrieved 10 September 2016, from https://docs.unrealengine.com/latest/INT/Engine/Rendering/ParticleSystems/Cascade/

Epic Games,. (2016). Visual Effects: Lesson 07A: Using GPU Particle Simulations –
Epic Wiki. Wiki.unrealengine.com. Retrieved 10 September 2016, from https://wiki.unrealengine.com/Visual_Effects:_Lesson_07A:_Using_GPU_Particle_Simulations

Failes, I. Masters of FX.

Firth, P. (2016). Physics engines for dummies | Wildbunny blog. (2016).
Wildbunny.co.uk. Retrieved 7 September 2016, from http://www.wildbunny.co.uk/blog/2011/04/06/physics-engines-for-dummies/
Gourlay, M. (2016). Fluid Simulation for Video Games Part 1. Retrieved 7 September
2016, from https://software.intel.com/en-us/articles/fluid-simulation-for-video-games-part-1

Green, S. (2016). Particle-based Fluid Simulation (1st ed.). NVidia. Retrieved from
http://developer.download.nvidia.com/presentations/2008/GDC/GDC08_ParticleFluids.pdf

Guinness World Records. (1998). First film with digital water. Retrieved 9 September
2016, from http://www.guinnessworldrecords.com/world-records/first-film-with-digital-water

Irving, G., Guendelman, E., Losasso, F., & Fedkiw, R. (2016). Efficient Simulation of
Large Bodies of Water by Coupling Two and Three Dimensional Techniques (1st ed.). Stanford: Stanford University. Retrieved from http://physbam.stanford.edu/~fedkiw/papers/stanford2006-01.pdf

Kinephanos. (2016) Game Engines and Game History. Kinephanos.ca. Retrieved 7
September 2016, from http://www.kinephanos.ca/2014/game-engines-and-game-history/

Lee, B. (2011). Computational Fluid Dynamics in Cardiovascular Disease. Korean
Circulation Journal, 41(8), 423. http://dx.doi.org/10.4070/kcj.2011.41.8.423

Matthias, M. (2016). Real Time Fluids in Games (1st ed.). Ageia. Retrieved from
https://www.cs.ubc.ca/~rbridson/fluidsimulation/GameFluids2007.pdf

Macklin, M., Muller, M., Chentanez, N., & Kim, T. (2016). Unified Particle Physics for
Real-Time Applications (1st ed.). New York: NVidia. Retrieved from http://mmacklin.com/uppfrta_preprint.pdf

Müller, M., Charypar, D., & Gross, M. (2016). Particle-Based Fluid Simulation for
Interactive Applications (1st ed.). Zürich: Federal Institute of Technology. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.844&rep=rep1&type=pdf

Niklas, C. (2016). PONGMECHANIK. Cyberniklas.de. Retrieved 7 September 2016,
from http://www.cyberniklas.de/pongmechanik/

NVidia. (2016). NVIDIA presents Cataclysm liquid solver for Unreal Engine 4 |
PhysXInfo.com – PhysX News. Physxinfo.com. Retrieved 7 September 2016, from http://physxinfo.com/news/12737/nvidia-presents-cataclysm-liquid-solver-for-unreal-engine-4/

NVidia. (2016). NVIDIA APEX 1.3.1 Documentation.
(2016). docs.nvidia.com. Retrieved 7 September 2016, from http://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/apexsdk/index.html

NVidia. (n.d.). Rigid Body Dynamics. Retrieved September 07, 2016, from
http://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/RigidBodyDynamics.html

Pong Game. (2016). Ponggame.org. Retrieved 7 September 2016, from
http://www.ponggame.org/

Serrano, H. (2016). How does a Physics Engine work? An Overview. (2016). Harold
Serrano. Retrieved 7 September 2016, from http://www.haroldserrano.com/blog/how-a-physics-engine-works-an-overview

Stam, J. (2016). Real-Time Fluid Dynamics for Games (1st ed.). Toronto: Alias |
wavefront. Retrieved from http://www.intpowertechcorp.com/GDC03.pdf

Stelly, J. (2007). Physical Gameplay in Half-Life 2 (1st ed.). Valve. Retrieved from
http://www.valvesoftware.com/publications/2006/GDC2006_PhysicalGameplayInHL2.pdf

Tesla Motors. (2016). Get a job: Tesla Motors is hiring an Unreal Engine Artist.
(2016). Gamasutra.com. Retrieved 8 September 2016, from http://www.gamasutra.com/view/news/258343/Get_a_job_Tesla_Motors_is_hiring_an_Unreal_Engine_Artist.php
Tretkoff, E. (2016). This Month in Physics History - October 1958: Physicist Invents
First Video Game. Aps.org. Retrieved 9 September 2016, from https://www.aps.org/publications/apsnews/200810/physicshistory.cfm

Vlachos, A. (2016). Water Flow in Portal 2 (1st ed.). Los Angeles: Valve. Retrieved
from http://www.valvesoftware.com/publications/2010/siggraph2010_vlachos_waterflow.pdf

Bibliography:

Behavior Tutorials - Havok. (2016). Havok. Retrieved 7 September 2016, from
	http://www.havok.com/behavior-tutorials/

Coombes, D. (2014). The Witcher 3: Wild Hunt with NVIDIA HairWorks shown at
Gamescom. Developer.nvidia.com. Retrieved 9 September 2016, from https://developer.nvidia.com/content/witcher-3-wild-hunt-physx-and-nvidia-hairworks-shown-gamescom

Emperore, K. & Sherry, D. (2015). Unreal Engine Physics Essentials. Packt
Publishing Ltd.

Epic Games. (n.d.). Physics Sub-Stepping. Retrieved September 07, 2016, from
https://docs.unrealengine.com/latest/INT/Engine/Physics/Substepping/index.html

Gaffer on Games | Game Physics. (2016). Gafferongames.com. Retrieved 7
September 2016, from http://gafferongames.com/game-physics/physics-in-3d/

Gamasutra - Practical Fluid Dynamics: Part 1. (2016). Gamasutra.com. Retrieved 7
September 2016, from http://www.gamasutra.com/view/feature/1549/practical_fluid_dynamics_part_1.php?print=1

Infusion Studios. (2016). Real-Time Visualization R&D with Unreal Engine 4.5.
Infusionstudios3d.com. Retrieved 8 September 2016, from http://www.infusionstudios3d.com/index.php/real-time-visualization-rd-with-unreal-engine-4-5/

Restuccio, D. (2016). The Day After Tomorrow's Photoreal Effects.
Postmagazine.com. Retrieved 10 September 2016, from http://www.postmagazine.com/Publications/Post-Magazine/2004/June-1-2004/THE-DAY-AFTER-TOMORROWS-PHOTOREAL-EFFECTS.aspx

Space Engineers on Steam. (2016). Store.steampowered.com. Retrieved 8
September 2016, from http://store.steampowered.com/app/244850/

The History of Game Engines. (2016). prezi.com. Retrieved 7 September 2016, from
https://prezi.com/w56f8xawwcyg/the-history-of-game-engines/

